Skip to content

10: Data Visualization and Reporting with PHP

Data Visualization and Reporting with PHP

Chapter 10: Data Visualization and Reporting with PHP

Section titled “Chapter 10: Data Visualization and Reporting with PHP”

You’ve collected data, analyzed it, and built machine learning models—now it’s time to communicate your findings. Data visualization turns raw numbers into compelling visual stories that drive business decisions. This chapter teaches you to create professional charts, build interactive dashboards, and generate automated reports using PHP.

You’ll learn to integrate Chart.js for beautiful web visualizations, build real-time dashboards that update automatically, generate PDF reports for stakeholders, and follow best practices for visual communication. By the end, you’ll be able to present your data science work in ways that inform, persuade, and inspire action.

This is where your technical work meets business impact—you’ll transform complex analyses into clear, actionable insights that anyone can understand.

Before starting this chapter, you should have:

Verify your setup:

Terminal window
# Check PHP version
php --version
# Install required PHP packages
composer require dompdf/dompdf
# Verify Node/npm for Chart.js (optional, can use CDN)
node --version
npm --version

By the end of this chapter, you will have created:

  • ChartBuilder class for generating Chart.js configurations
  • DashboardGenerator for interactive web dashboards
  • PDFReportGenerator for automated PDF reports
  • DataExporter for CSV/JSON/Excel exports
  • Real-time dashboard with live data updates
  • ML model performance visualizations
  • A/B test result charts with statistical annotations
  • Executive summary report with charts and insights
  • Create charts and graphs using Chart.js
  • Build interactive dashboards with real-time updates
  • Generate professional PDF reports
  • Export data in multiple formats (CSV, JSON, Excel)
  • Visualize ML model performance
  • Present A/B test results effectively
  • Follow visualization best practices
  • Tell compelling data stories

Step 1: Creating Charts with Chart.js (~20 min)

Section titled “Step 1: Creating Charts with Chart.js (~20 min)”

Generate beautiful, interactive charts using Chart.js integrated with PHP.

Chart.js is a popular JavaScript charting library:

  • 🎨 Beautiful default styling
  • 📱 Responsive and mobile-friendly
  • 🔄 Animations and interactions
  • 📊 8 chart types (line, bar, pie, radar, etc.)
  • 🎯 Simple API
  • 📦 Small footprint (~60KB)

1. Create Chart Builder class:

src/Visualization/ChartBuilder.php
<?php
declare(strict_types=1);
namespace DataScience\Visualization;
class ChartBuilder
{
/**
* Generate Chart.js configuration for line chart
*/
public function lineChart(
array $labels,
array $datasets,
array $options = []
): array {
return [
'type' => 'line',
'data' => [
'labels' => $labels,
'datasets' => $this->formatDatasets($datasets, 'line'),
],
'options' => array_merge($this->getDefaultOptions(), $options),
];
}
/**
* Generate Chart.js configuration for bar chart
*/
public function barChart(
array $labels,
array $datasets,
array $options = []
): array {
return [
'type' => 'bar',
'data' => [
'labels' => $labels,
'datasets' => $this->formatDatasets($datasets, 'bar'),
],
'options' => array_merge($this->getDefaultOptions(), $options),
];
}
/**
* Generate Chart.js configuration for pie chart
*/
public function pieChart(
array $labels,
array $data,
array $options = []
): array {
return [
'type' => 'pie',
'data' => [
'labels' => $labels,
'datasets' => [[
'data' => $data,
'backgroundColor' => $this->generateColors(count($data)),
]],
],
'options' => array_merge($this->getDefaultOptions(), $options),
];
}
/**
* Generate Chart.js configuration for scatter plot
*/
public function scatterPlot(
array $datasets,
array $options = []
): array {
return [
'type' => 'scatter',
'data' => [
'datasets' => $this->formatDatasets($datasets, 'scatter'),
],
'options' => array_merge($this->getDefaultOptions(), $options),
];
}
/**
* ML model performance chart (accuracy over time)
*/
public function modelPerformanceChart(
array $dates,
array $accuracyScores,
float $threshold = 0.85
): array {
return $this->lineChart(
labels: $dates,
datasets: [
[
'label' => 'Model Accuracy',
'data' => $accuracyScores,
'borderColor' => 'rgb(75, 192, 192)',
'backgroundColor' => 'rgba(75, 192, 192, 0.2)',
'tension' => 0.4,
],
[
'label' => 'Threshold',
'data' => array_fill(0, count($dates), $threshold),
'borderColor' => 'rgb(255, 99, 132)',
'borderDash' => [5, 5],
'fill' => false,
],
],
options: [
'plugins' => [
'title' => [
'display' => true,
'text' => 'Model Accuracy Over Time',
],
],
'scales' => [
'y' => [
'min' => 0,
'max' => 1,
'ticks' => [
'callback' => 'JS:function(value) { return (value * 100).toFixed(0) + "%"; }',
],
],
],
]
);
}
/**
* A/B test results chart
*/
public function abTestChart(
string $controlLabel,
float $controlConversion,
string $treatmentLabel,
float $treatmentConversion,
float $pValue
): array {
$significant = $pValue < 0.05;
return $this->barChart(
labels: [$controlLabel, $treatmentLabel],
datasets: [[
'label' => 'Conversion Rate',
'data' => [$controlConversion, $treatmentConversion],
'backgroundColor' => [
'rgba(54, 162, 235, 0.8)',
$significant ? 'rgba(75, 192, 192, 0.8)' : 'rgba(255, 206, 86, 0.8)',
],
]],
options: [
'plugins' => [
'title' => [
'display' => true,
'text' => sprintf(
'A/B Test Results (p-value: %.4f %s)',
$pValue,
$significant ? '- Significant ✓' : '- Not Significant'
),
],
],
'scales' => [
'y' => [
'min' => 0,
'max' => 1,
'ticks' => [
'callback' => 'JS:function(value) { return (value * 100).toFixed(1) + "%"; }',
],
],
],
]
);
}
/**
* Format datasets for Chart.js
*/
private function formatDatasets(array $datasets, string $chartType): array
{
$formatted = [];
$colors = $this->generateColors(count($datasets));
foreach ($datasets as $index => $dataset) {
$color = $colors[$index];
$formatted[] = array_merge([
'label' => $dataset['label'] ?? "Dataset " . ($index + 1),
'data' => $dataset['data'],
'backgroundColor' => $this->hexToRgba($color, 0.2),
'borderColor' => $color,
'borderWidth' => 2,
], $dataset['options'] ?? []);
}
return $formatted;
}
/**
* Get default Chart.js options
*/
private function getDefaultOptions(): array
{
return [
'responsive' => true,
'maintainAspectRatio' => true,
'plugins' => [
'legend' => [
'display' => true,
'position' => 'top',
],
],
];
}
/**
* Generate color palette
*/
private function generateColors(int $count): array
{
$colors = [
'rgb(255, 99, 132)', // Red
'rgb(54, 162, 235)', // Blue
'rgb(255, 206, 86)', // Yellow
'rgb(75, 192, 192)', // Green
'rgb(153, 102, 255)', // Purple
'rgb(255, 159, 64)', // Orange
'rgb(199, 199, 199)', // Gray
'rgb(83, 102, 255)', // Indigo
];
// Repeat colors if needed
while (count($colors) < $count) {
$colors = array_merge($colors, $colors);
}
return array_slice($colors, 0, $count);
}
/**
* Convert hex color to rgba
*/
private function hexToRgba(string $hex, float $alpha): string
{
// Remove 'rgb(' and ')' if present
$hex = str_replace(['rgb(', ')'], '', $hex);
// If already rgb format, add alpha
if (str_contains($hex, ',')) {
return "rgba({$hex}, {$alpha})";
}
// Otherwise it's hex, convert it
$hex = ltrim($hex, '#');
$r = hexdec(substr($hex, 0, 2));
$g = hexdec(substr($hex, 2, 2));
$b = hexdec(substr($hex, 4, 2));
return "rgba({$r}, {$g}, {$b}, {$alpha})";
}
/**
* Export chart configuration as JSON
*/
public function toJson(array $config): string
{
// Handle JavaScript callbacks
$json = json_encode($config, JSON_PRETTY_PRINT);
// Replace JS callback placeholders
$json = preg_replace(
'/"JS:(.*?)"/',
'$1',
$json
);
return $json;
}
}

2. Create HTML template for charts:

templates/chart-template.php
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title><?= htmlspecialchars($title ?? 'Chart') ?></title>
<script src="https://cdn.jsdelivr.net/npm/chart.js@4.4.0/dist/chart.umd.min.js"></script>
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, sans-serif;
margin: 0;
padding: 20px;
background: #f5f5f5;
}
.container {
max-width: 1200px;
margin: 0 auto;
background: white;
padding: 30px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.chart-container {
position: relative;
height: 400px;
margin: 20px 0;
}
h1 {
color: #333;
border-bottom: 3px solid #3498db;
padding-bottom: 10px;
}
.stats {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 15px;
margin: 20px 0;
}
.stat-card {
background: #f8f9fa;
padding: 15px;
border-radius: 4px;
border-left: 4px solid #3498db;
}
.stat-value {
font-size: 2em;
font-weight: bold;
color: #2c3e50;
}
.stat-label {
color: #7f8c8d;
font-size: 0.9em;
}
</style>
</head>
<body>
<div class="container">
<h1><?= htmlspecialchars($title ?? 'Data Visualization') ?></h1>
<?php if (!empty($stats)): ?>
<div class="stats">
<?php foreach ($stats as $stat): ?>
<div class="stat-card">
<div class="stat-value"><?= htmlspecialchars($stat['value']) ?></div>
<div class="stat-label"><?= htmlspecialchars($stat['label']) ?></div>
</div>
<?php endforeach; ?>
</div>
<?php endif; ?>
<div class="chart-container">
<canvas id="myChart"></canvas>
</div>
<?php if (!empty($description)): ?>
<div class="description">
<h3>Insights</h3>
<p><?= nl2br(htmlspecialchars($description)) ?></p>
</div>
<?php endif; ?>
</div>
<script>
const ctx = document.getElementById('myChart').getContext('2d');
const chartConfig = <?= $chartJson ?>;
new Chart(ctx, chartConfig);
</script>
</body>
</html>

3. Create visualization examples:

examples/chart-examples.php
<?php
declare(strict_types=1);
require __DIR__ . '/../vendor/autoload.php';
use DataScience\Visualization\ChartBuilder;
$chartBuilder = new ChartBuilder();
// Example 1: Model performance over time
$dates = ['Week 1', 'Week 2', 'Week 3', 'Week 4', 'Week 5'];
$accuracyScores = [0.87, 0.89, 0.91, 0.88, 0.92];
$performanceChart = $chartBuilder->modelPerformanceChart(
dates: $dates,
accuracyScores: $accuracyScores,
threshold: 0.85
);
$stats = [
['label' => 'Current Accuracy', 'value' => '92%'],
['label' => 'Avg Accuracy', 'value' => '89.4%'],
['label' => 'Predictions', 'value' => '1,247'],
];
$title = 'ML Model Performance Dashboard';
$chartJson = $chartBuilder->toJson($performanceChart);
$description = "Model performance has improved steadily over the past 5 weeks. Current accuracy of 92% exceeds the 85% threshold, indicating excellent model health.";
// Generate HTML
ob_start();
include __DIR__ . '/../templates/chart-template.php';
$html = ob_get_clean();
file_put_contents(__DIR__ . '/../output/model-performance.html', $html);
echo "✓ Generated model-performance.html\n";
// Example 2: A/B Test Results
$abTestChart = $chartBuilder->abTestChart(
controlLabel: 'Control (Original)',
controlConversion: 0.12,
treatmentLabel: 'Treatment (New Design)',
treatmentConversion: 0.15,
pValue: 0.023
);
$stats = [
['label' => 'Control Conversion', 'value' => '12.0%'],
['label' => 'Treatment Conversion', 'value' => '15.0%'],
['label' => 'Lift', 'value' => '+25%'],
['label' => 'P-Value', 'value' => '0.023'],
];
$title = 'A/B Test Results';
$chartJson = $chartBuilder->toJson($abTestChart);
$description = "The new design achieved a 25% lift in conversion rate (12% → 15%) with statistical significance (p=0.023 < 0.05). Recommendation: Deploy to 100% of users.";
ob_start();
include __DIR__ . '/../templates/chart-template.php';
$html = ob_get_clean();
file_put_contents(__DIR__ . '/../output/ab-test-results.html', $html);
echo "✓ Generated ab-test-results.html\n";
// Example 3: Sales trend
$salesChart = $chartBuilder->lineChart(
labels: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun'],
datasets: [
[
'label' => '2025 Sales',
'data' => [45000, 52000, 48000, 61000, 58000, 67000],
],
[
'label' => '2024 Sales',
'data' => [38000, 41000, 43000, 47000, 49000, 52000],
],
],
options: [
'plugins' => [
'title' => [
'display' => true,
'text' => 'Sales Comparison: 2024 vs 2025',
],
],
]
);
$stats = [
['label' => 'Jun 2025 Sales', 'value' => '$67,000'],
['label' => 'YoY Growth', 'value' => '+28.8%'],
['label' => 'Total 2025', 'value' => '$331,000'],
];
$title = 'Sales Performance';
$chartJson = $chartBuilder->toJson($salesChart);
$description = "2025 sales are trending 28.8% higher than 2024, with strong growth in Q2. June 2025 achieved $67,000 vs $52,000 in June 2024.";
ob_start();
include __DIR__ . '/../templates/chart-template.php';
$html = ob_get_clean();
file_put_contents(__DIR__ . '/../output/sales-trend.html', $html);
echo "✓ Generated sales-trend.html\n\n";
echo "✓ Open output/*.html in your browser to view charts!\n";

Running the example generates three HTML files with interactive charts:

✓ Generated model-performance.html
✓ Generated ab-test-results.html
✓ Generated sales-trend.html
✓ Open output/*.html in your browser to view charts!

Opening model-performance.html in a browser shows:

  • Interactive line chart with model accuracy over time
  • Threshold line at 85%
  • Stat cards showing current metrics
  • Hover tooltips on data points
  • Responsive layout

Chart.js renders charts on the client-side using HTML5 Canvas:

  • PHP generates configuration: Your PHP code creates the chart structure
  • JSON serialization: Configuration is converted to JavaScript
  • Browser rendering: Chart.js draws the interactive chart
  • No server rendering: Charts update smoothly without page reloads

Key Pattern: PHP handles data processing, Chart.js handles visualization.

Problem: Charts not displaying

Cause: Chart.js library not loaded or JavaScript errors.

Solution: Check browser console and verify CDN:

<!-- Use specific version for stability -->
<script src="https://cdn.jsdelivr.net/npm/chart.js@4.4.0/dist/chart.umd.min.js"></script>
<!-- Verify in browser console -->
<script>
console.log('Chart.js version:', Chart.version);
</script>

Problem: JavaScript callbacks not working

Cause: JSON encoding converts callbacks to strings.

Solution: Use placeholder pattern and replace after encoding:

// In chart options
'callback' => 'JS:function(value) { return value + "%"; }'
// In toJson() method
$json = preg_replace('/"JS:(.*?)"/', '$1', $json);

Problem: Colors look inconsistent

Cause: Not enough colors for datasets or transparency issues.

Solution: Generate more colors or use consistent palette:

private function generateColors(int $count): array
{
// Generate colors dynamically using HSL
$colors = [];
for ($i = 0; $i < $count; $i++) {
$hue = ($i * 360 / $count) % 360;
$colors[] = "hsl({$hue}, 70%, 60%)";
}
return $colors;
}

Step 2: Building Interactive Dashboards (~25 min)

Section titled “Step 2: Building Interactive Dashboards (~25 min)”

Create a real-time dashboard that displays multiple visualizations and updates automatically.

1. Create Dashboard Generator:

src/Visualization/DashboardGenerator.php
<?php
declare(strict_types=1);
namespace DataScience\Visualization;
class DashboardGenerator
{
private ChartBuilder $chartBuilder;
private array $widgets = [];
public function __construct()
{
$this->chartBuilder = new ChartBuilder();
}
/**
* Add chart widget to dashboard
*/
public function addChart(
string $id,
string $title,
array $chartConfig,
int $width = 6
): self {
$this->widgets[] = [
'type' => 'chart',
'id' => $id,
'title' => $title,
'config' => $chartConfig,
'width' => $width, // Bootstrap columns (1-12)
];
return $this;
}
/**
* Add stat card widget
*/
public function addStatCard(
string $title,
string $value,
string $trend = '',
string $icon = '📊',
int $width = 3
): self {
$this->widgets[] = [
'type' => 'stat',
'title' => $title,
'value' => $value,
'trend' => $trend,
'icon' => $icon,
'width' => $width,
];
return $this;
}
/**
* Add table widget
*/
public function addTable(
string $title,
array $headers,
array $rows,
int $width = 12
): self {
$this->widgets[] = [
'type' => 'table',
'title' => $title,
'headers' => $headers,
'rows' => $rows,
'width' => $width,
];
return $this;
}
/**
* Generate complete dashboard HTML
*/
public function generate(
string $title,
int $refreshInterval = 0
): string {
$html = <<<HTML
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>{$title}</title>
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.0/dist/css/bootstrap.min.css" rel="stylesheet">
<script src="https://cdn.jsdelivr.net/npm/chart.js@4.4.0/dist/chart.umd.min.js"></script>
<style>
body { background: #f8f9fa; padding: 20px; }
.dashboard-header {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 30px;
border-radius: 8px;
margin-bottom: 30px;
box-shadow: 0 4px 6px rgba(0,0,0,0.1);
}
.widget {
background: white;
border-radius: 8px;
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.stat-card {
text-align: center;
padding: 30px 20px;
}
.stat-value {
font-size: 2.5em;
font-weight: bold;
color: #2c3e50;
}
.stat-label {
color: #7f8c8d;
font-size: 0.9em;
margin-top: 5px;
}
.stat-trend {
font-size: 0.85em;
margin-top: 10px;
}
.trend-up { color: #27ae60; }
.trend-down { color: #e74c3c; }
.widget-title {
font-size: 1.1em;
font-weight: 600;
margin-bottom: 15px;
color: #34495e;
}
.last-updated {
color: #95a5a6;
font-size: 0.85em;
}
.chart-container {
position: relative;
height: 300px;
}
</style>
</head>
<body>
<div class="container-fluid">
<div class="dashboard-header">
<h1>{$title}</h1>
<p class="last-updated mb-0">Last updated: <span id="lastUpdate">{$this->getCurrentTime()}</span></p>
</div>
<div class="row">
HTML;
foreach ($this->widgets as $widget) {
$html .= $this->renderWidget($widget);
}
$html .= <<<HTML
</div>
</div>
<script>
const charts = {};
HTML;
// Initialize charts
foreach ($this->widgets as $widget) {
if ($widget['type'] === 'chart') {
$chartJson = $this->chartBuilder->toJson($widget['config']);
$html .= <<<JS
charts['{$widget['id']}'] = new Chart(
document.getElementById('{$widget['id']}').getContext('2d'),
{$chartJson}
);
JS;
}
}
// Add auto-refresh
if ($refreshInterval > 0) {
$html .= <<<JS
// Auto-refresh every {$refreshInterval} seconds
setInterval(function() {
location.reload();
}, {$refreshInterval} * 1000);
// Update timestamp
setInterval(function() {
document.getElementById('lastUpdate').textContent = new Date().toLocaleString();
}, 1000);
JS;
}
$html .= <<<HTML
</script>
</body>
</html>
HTML;
return $html;
}
/**
* Render individual widget
*/
private function renderWidget(array $widget): string
{
$width = $widget['width'];
$html = "<div class=\"col-md-{$width}\">\n";
switch ($widget['type']) {
case 'chart':
$html .= $this->renderChartWidget($widget);
break;
case 'stat':
$html .= $this->renderStatWidget($widget);
break;
case 'table':
$html .= $this->renderTableWidget($widget);
break;
}
$html .= "</div>\n";
return $html;
}
/**
* Render chart widget
*/
private function renderChartWidget(array $widget): string
{
return <<<HTML
<div class="widget">
<div class="widget-title">{$widget['title']}</div>
<div class="chart-container">
<canvas id="{$widget['id']}"></canvas>
</div>
</div>
HTML;
}
/**
* Render stat card widget
*/
private function renderStatWidget(array $widget): string
{
$trendClass = '';
$trendIcon = '';
if ($widget['trend']) {
if (str_contains($widget['trend'], '+')) {
$trendClass = 'trend-up';
$trendIcon = '';
} elseif (str_contains($widget['trend'], '-')) {
$trendClass = 'trend-down';
$trendIcon = '';
}
}
return <<<HTML
<div class="widget stat-card">
<div style="font-size: 2em; margin-bottom: 10px;">{$widget['icon']}</div>
<div class="stat-value">{$widget['value']}</div>
<div class="stat-label">{$widget['title']}</div>
{$this->renderTrend($widget['trend'], $trendClass, $trendIcon)}
</div>
HTML;
}
/**
* Render trend indicator
*/
private function renderTrend(string $trend, string $class, string $icon): string
{
if (!$trend) {
return '';
}
return "<div class=\"stat-trend {$class}\">{$icon} {$trend}</div>";
}
/**
* Render table widget
*/
private function renderTableWidget(array $widget): string
{
$html = <<<HTML
<div class="widget">
<div class="widget-title">{$widget['title']}</div>
<div class="table-responsive">
<table class="table table-hover">
<thead>
<tr>
HTML;
foreach ($widget['headers'] as $header) {
$html .= "<th>" . htmlspecialchars($header) . "</th>";
}
$html .= <<<HTML
</tr>
</thead>
<tbody>
HTML;
foreach ($widget['rows'] as $row) {
$html .= "<tr>";
foreach ($row as $cell) {
$html .= "<td>" . htmlspecialchars((string)$cell) . "</td>";
}
$html .= "</tr>\n";
}
$html .= <<<HTML
</tbody>
</table>
</div>
</div>
HTML;
return $html;
}
/**
* Get current timestamp
*/
private function getCurrentTime(): string
{
return date('Y-m-d H:i:s');
}
}

2. Create dashboard example:

examples/dashboard-example.php
<?php
declare(strict_types=1);
require __DIR__ . '/../vendor/autoload.php';
use DataScience\Visualization\DashboardGenerator;
use DataScience\Visualization\ChartBuilder;
$dashboard = new DashboardGenerator();
$chartBuilder = new ChartBuilder();
// Stat cards
$dashboard
->addStatCard(
title: 'Total Users',
value: '12,847',
trend: '+8.5%',
icon: '👥',
width: 3
)
->addStatCard(
title: 'Revenue',
value: '$45,231',
trend: '+12.3%',
icon: '💰',
width: 3
)
->addStatCard(
title: 'Conversion Rate',
value: '3.42%',
trend: '+0.8%',
icon: '🎯',
width: 3
)
->addStatCard(
title: 'Avg Order Value',
value: '$127',
trend: '-2.1%',
icon: '🛒',
width: 3
);
// Model performance chart
$performanceChart = $chartBuilder->modelPerformanceChart(
dates: ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'],
accuracyScores: [0.87, 0.89, 0.91, 0.90, 0.92, 0.91, 0.93],
threshold: 0.85
);
$dashboard->addChart(
id: 'modelPerformance',
title: 'ML Model Performance (Last 7 Days)',
chartConfig: $performanceChart,
width: 8
);
// Conversion funnel
$funnelChart = $chartBuilder->barChart(
labels: ['Visitors', 'Sign-ups', 'Trials', 'Paid'],
datasets: [[
'label' => 'Conversion Funnel',
'data' => [10000, 1500, 450, 342],
]],
options: [
'plugins' => [
'title' => [
'display' => true,
'text' => 'Conversion Funnel',
],
],
]
);
$dashboard->addChart(
id: 'conversionFunnel',
title: 'Conversion Funnel',
chartConfig: $funnelChart,
width: 4
);
// Top products table
$dashboard->addTable(
title: 'Top 5 Products',
headers: ['Product', 'Sales', 'Revenue', 'Trend'],
rows: [
['Product A', '1,247', '$45,231', '+12%'],
['Product B', '892', '$31,220', '+8%'],
['Product C', '743', '$22,100', '-3%'],
['Product D', '612', '$18,360', '+15%'],
['Product E', '501', '$15,030', '+5%'],
],
width: 6
);
// Traffic sources pie chart
$trafficChart = $chartBuilder->pieChart(
labels: ['Organic', 'Direct', 'Social', 'Referral', 'Paid'],
data: [45, 25, 15, 10, 5]
);
$dashboard->addChart(
id: 'trafficSources',
title: 'Traffic Sources',
chartConfig: $trafficChart,
width: 6
);
// Generate dashboard
$html = $dashboard->generate(
title: 'Business Intelligence Dashboard',
refreshInterval: 30 // Auto-refresh every 30 seconds
);
file_put_contents(__DIR__ . '/../output/dashboard.html', $html);
echo "✓ Dashboard generated successfully!\n";
echo "✓ Open output/dashboard.html in your browser\n";
echo "✓ Dashboard will auto-refresh every 30 seconds\n";

Opening dashboard.html shows:

╔══════════════════════════════════════════════════════╗
║ Business Intelligence Dashboard ║
║ Last updated: 2026-01-12 15:30:45 ║
╚══════════════════════════════════════════════════════╝
[👥] [💰] [🎯] [🛒]
12,847 $45,231 3.42% $127
Total Users Revenue Conversion Avg Order
↑ +8.5% ↑ +12.3% ↑ +0.8% ↓ -2.1%
[ML Model Performance Chart] [Conversion Funnel]
[Traffic Sources Pie Chart] [Top 5 Products Table]

All charts are interactive with:

  • Hover tooltips
  • Click to show/hide datasets
  • Responsive resizing
  • Smooth animations

Dashboard Architecture:

  1. PHP generates static HTML: Server-side rendering for initial load
  2. Chart.js renders charts: Client-side interactivity
  3. Bootstrap provides layout: Responsive grid system
  4. Auto-refresh updates data: Periodic page reloads

Benefits:

  • Fast initial load
  • Rich interactivity
  • Mobile-friendly
  • Easy to update

Problem: Dashboard doesn’t refresh

Cause: refreshInterval not working or browser blocks reload.

Solution: Use AJAX for partial updates instead:

// Better: Update data without full page reload
setInterval(async function() {
const response = await fetch('/api/dashboard-data');
const data = await response.json();
// Update charts
Object.keys(charts).forEach(chartId => {
charts[chartId].data.datasets[0].data = data[chartId];
charts[chartId].update();
});
}, 30000);

Problem: Charts overlap on mobile

Cause: Fixed heights don’t adapt to small screens.

Solution: Use responsive CSS:

@media (max-width: 768px) {
.chart-container {
height: 250px; /* Smaller on mobile */
}
.stat-card {
margin-bottom: 15px;
}
}

Create automated PDF reports with charts, tables, and insights for stakeholders.

1. Install dompdf:

Terminal window
composer require dompdf/dompdf

2. Create PDF Report Generator:

src/Visualization/PDFReportGenerator.php
<?php
declare(strict_types=1);
namespace DataScience\Visualization;
use Dompdf\Dompdf;
use Dompdf\Options;
class PDFReportGenerator
{
private Dompdf $dompdf;
private string $html = '';
public function __construct()
{
$options = new Options();
$options->set('isHtml5ParserEnabled', true);
$options->set('isRemoteEnabled', true);
$this->dompdf = new Dompdf($options);
}
/**
* Start building report
*/
public function startReport(string $title, string $subtitle = ''): self
{
$date = date('F j, Y');
$this->html = <<<HTML
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<style>
body {
font-family: Arial, sans-serif;
margin: 40px;
color: #333;
}
.header {
text-align: center;
border-bottom: 3px solid #3498db;
padding-bottom: 20px;
margin-bottom: 30px;
}
h1 {
color: #2c3e50;
margin: 0;
}
.subtitle {
color: #7f8c8d;
font-size: 14px;
margin-top: 10px;
}
.section {
margin: 30px 0;
}
.section-title {
font-size: 18px;
font-weight: bold;
color: #34495e;
border-left: 4px solid #3498db;
padding-left: 10px;
margin: 20px 0 15px 0;
}
table {
width: 100%;
border-collapse: collapse;
margin: 15px 0;
}
th {
background: #3498db;
color: white;
padding: 10px;
text-align: left;
}
td {
padding: 8px;
border-bottom: 1px solid #ecf0f1;
}
tr:nth-child(even) {
background: #f8f9fa;
}
.stat-grid {
display: table;
width: 100%;
margin: 15px 0;
}
.stat-row {
display: table-row;
}
.stat-cell {
display: table-cell;
width: 25%;
padding: 15px;
text-align: center;
border: 1px solid #ecf0f1;
}
.stat-value {
font-size: 24px;
font-weight: bold;
color: #2c3e50;
}
.stat-label {
font-size: 12px;
color: #7f8c8d;
margin-top: 5px;
}
.insight-box {
background: #e8f5e9;
border-left: 4px solid #4caf50;
padding: 15px;
margin: 15px 0;
}
.warning-box {
background: #fff3e0;
border-left: 4px solid #ff9800;
padding: 15px;
margin: 15px 0;
}
.footer {
text-align: center;
color: #95a5a6;
font-size: 10px;
margin-top: 50px;
padding-top: 20px;
border-top: 1px solid #ecf0f1;
}
.page-break {
page-break-after: always;
}
</style>
</head>
<body>
<div class="header">
<h1>{$title}</h1>
<div class="subtitle">{$subtitle}<br>Generated on {$date}</div>
</div>
HTML;
return $this;
}
/**
* Add section heading
*/
public function addSection(string $title): self
{
$this->html .= "<div class=\"section-title\">{$title}</div>\n";
return $this;
}
/**
* Add paragraph text
*/
public function addText(string $text): self
{
$this->html .= "<p>{$text}</p>\n";
return $this;
}
/**
* Add stat cards
*/
public function addStats(array $stats): self
{
$this->html .= "<div class=\"stat-grid\">\n<div class=\"stat-row\">\n";
foreach ($stats as $stat) {
$this->html .= <<<HTML
<div class="stat-cell">
<div class="stat-value">{$stat['value']}</div>
<div class="stat-label">{$stat['label']}</div>
</div>
HTML;
}
$this->html .= "</div>\n</div>\n";
return $this;
}
/**
* Add table
*/
public function addTable(array $headers, array $rows): self
{
$this->html .= "<table>\n<thead><tr>\n";
foreach ($headers as $header) {
$this->html .= "<th>" . htmlspecialchars($header) . "</th>";
}
$this->html .= "</tr></thead>\n<tbody>\n";
foreach ($rows as $row) {
$this->html .= "<tr>";
foreach ($row as $cell) {
$this->html .= "<td>" . htmlspecialchars((string)$cell) . "</td>";
}
$this->html .= "</tr>\n";
}
$this->html .= "</tbody>\n</table>\n";
return $this;
}
/**
* Add insight box (green)
*/
public function addInsight(string $text): self
{
$this->html .= "<div class=\"insight-box\">✓ <strong>Insight:</strong> {$text}</div>\n";
return $this;
}
/**
* Add warning box (orange)
*/
public function addWarning(string $text): self
{
$this->html .= "<div class=\"warning-box\">⚠ <strong>Warning:</strong> {$text}</div>\n";
return $this;
}
/**
* Add chart image (must be base64 encoded)
*/
public function addChartImage(string $base64Image, string $caption = ''): self
{
$this->html .= "<div style=\"text-align: center; margin: 20px 0;\">\n";
$this->html .= "<img src=\"data:image/png;base64,{$base64Image}\" style=\"max-width: 100%;\">\n";
if ($caption) {
$this->html .= "<div style=\"font-size: 12px; color: #7f8c8d; margin-top: 5px;\">{$caption}</div>\n";
}
$this->html .= "</div>\n";
return $this;
}
/**
* Add page break
*/
public function addPageBreak(): self
{
$this->html .= "<div class=\"page-break\"></div>\n";
return $this;
}
/**
* Generate and save PDF
*/
public function savePDF(string $filename): void
{
$this->html .= <<<HTML
<div class="footer">
Generated by Data Science Reporting System<br>
Report Date: {$this->getCurrentTime()}
</div>
</body>
</html>
HTML;
$this->dompdf->loadHtml($this->html);
$this->dompdf->setPaper('A4', 'portrait');
$this->dompdf->render();
file_put_contents($filename, $this->dompdf->output());
}
/**
* Output PDF to browser
*/
public function streamPDF(string $filename): void
{
$this->html .= "</body></html>";
$this->dompdf->loadHtml($this->html);
$this->dompdf->setPaper('A4', 'portrait');
$this->dompdf->render();
$this->dompdf->stream($filename);
}
/**
* Get current timestamp
*/
private function getCurrentTime(): string
{
return date('Y-m-d H:i:s');
}
}

3. Create PDF report example:

examples/pdf-report-example.php
<?php
declare(strict_types=1);
require __DIR__ . '/../vendor/autoload.php';
use DataScience\Visualization\PDFReportGenerator;
echo "=== Generating PDF Report ===\n\n";
$report = new PDFReportGenerator();
$report
->startReport(
title: 'Monthly Business Intelligence Report',
subtitle: 'Executive Summary - January 2026'
)
->addSection('Executive Summary')
->addText('This report summarizes key business metrics and trends for January 2026. Overall performance shows strong growth across most indicators with notable improvements in customer acquisition and retention.')
->addStats([
['label' => 'Revenue', 'value' => '$127,450'],
['label' => 'Users', 'value' => '12,847'],
['label' => 'Conversion', 'value' => '3.42%'],
['label' => 'Churn Rate', 'value' => '2.1%'],
])
->addSection('Key Performance Indicators')
->addTable(
headers: ['Metric', 'Current', 'Previous', 'Change'],
rows: [
['Revenue', '$127,450', '$112,300', '+13.5%'],
['Active Users', '12,847', '11,920', '+7.8%'],
['Conversion Rate', '3.42%', '3.18%', '+0.24pp'],
['Average Order Value', '$127', '$130', '-2.3%'],
['Customer Lifetime Value', '$1,524', '$1,450', '+5.1%'],
]
)
->addInsight('Revenue grew 13.5% month-over-month, driven by increased user acquisition and improved conversion rates.')
->addSection('ML Model Performance')
->addText('Our spam detection model maintained excellent performance throughout the month:')
->addTable(
headers: ['Model', 'Accuracy', 'Predictions', 'Status'],
rows: [
['Spam Classifier', '92.3%', '45,231', 'Excellent'],
['Sentiment Analyzer', '87.5%', '12,847', 'Good'],
['Fraud Detector', '95.1%', '8,421', 'Excellent'],
]
)
->addPageBreak()
->addSection('Customer Segmentation')
->addTable(
headers: ['Segment', 'Count', '% Total', 'Avg Value'],
rows: [
['High Value', '1,284', '10%', '$450'],
['Medium Value', '5,139', '40%', '$127'],
['Low Value', '6,424', '50%', '$45'],
]
)
->addSection('Recommendations')
->addText('Based on the data analysis, we recommend the following actions:')
->addText('1. <strong>Increase focus on high-value customer retention</strong> - This segment represents 10% of users but 45% of revenue.')
->addText('2. <strong>Optimize conversion funnel</strong> - Drop-off rate at checkout increased by 0.8 percentage points.')
->addText('3. <strong>Expand product recommendations</strong> - ML-powered recommendations showed 25% higher conversion.')
->addWarning('Average order value decreased by 2.3%. Investigate pricing strategy and product mix.')
->addSection('Next Steps')
->addText('The following initiatives should be prioritized for February:')
->addTable(
headers: ['Initiative', 'Priority', 'Owner', 'Target Date'],
rows: [
['Launch loyalty program', 'High', 'Marketing', 'Feb 15'],
['A/B test new checkout flow', 'High', 'Product', 'Feb 10'],
['Implement price optimization', 'Medium', 'Finance', 'Feb 28'],
['Expand ML recommendations', 'Medium', 'Engineering', 'Feb 20'],
]
);
// Save PDF
$outputFile = __DIR__ . '/../output/monthly-report.pdf';
$report->savePDF($outputFile);
echo "✓ PDF report generated successfully!\n";
echo "✓ Saved to: {$outputFile}\n";
echo "✓ File size: " . number_format(filesize($outputFile)) . " bytes\n";
=== Generating PDF Report ===
✓ PDF report generated successfully!
✓ Saved to: output/monthly-report.pdf
✓ File size: 45,231 bytes

Opening the PDF shows a professional multi-page report with:

  • Header with title and generation date
  • Stat cards showing KPIs
  • Tables with formatted data
  • Insight and warning boxes
  • Page breaks between sections
  • Footer with timestamp

dompdf converts HTML/CSS to PDF:

  • HTML structure: Standard HTML for content
  • CSS styling: Regular CSS for formatting
  • PDF rendering: Server-side PDF generation
  • No JavaScript: Pure PHP solution

Advantages:

  • Professional appearance
  • Easy to automate
  • Email-friendly
  • Print-ready

Problem: PDF generation is slow

Cause: Large HTML or complex CSS.

Solution: Optimize HTML and avoid external resources:

// ❌ Slow: External images
<img src="https://example.com/chart.png">
// ✅ Fast: Embedded base64 images
<img src="...">

Problem: Fonts look wrong

Cause: dompdf doesn’t include all fonts.

Solution: Use standard fonts or embed custom fonts:

$options->set('defaultFont', 'Arial');
// Or load custom font
$options->set('fontDir', '/path/to/fonts');

Problem: Charts not appearing in PDF

Cause: Chart.js generates canvas elements (JavaScript), PDF needs static images.

Solution: Convert charts to images first:

// In browser, export chart as image
const canvas = document.getElementById('myChart');
const imageData = canvas.toDataURL('image/png');
// Send to PHP for PDF inclusion

Export data in multiple formats for different stakeholders.

1. Create Data Exporter:

src/Visualization/DataExporter.php
<?php
declare(strict_types=1);
namespace DataScience\Visualization;
class DataExporter
{
/**
* Export to CSV
*/
public function toCSV(array $headers, array $rows, string $filename): void
{
$handle = fopen($filename, 'w');
if ($handle === false) {
throw new \RuntimeException("Cannot open file: {$filename}");
}
// Write headers
fputcsv($handle, $headers);
// Write rows
foreach ($rows as $row) {
fputcsv($handle, $row);
}
fclose($handle);
}
/**
* Export to JSON
*/
public function toJSON(array $data, string $filename): void
{
$json = json_encode($data, JSON_PRETTY_PRINT);
file_put_contents($filename, $json);
}
/**
* Export to Excel-compatible CSV
*/
public function toExcelCSV(array $headers, array $rows, string $filename): void
{
$handle = fopen($filename, 'w');
if ($handle === false) {
throw new \RuntimeException("Cannot open file: {$filename}");
}
// UTF-8 BOM for Excel compatibility
fprintf($handle, chr(0xEF).chr(0xBB).chr(0xBF));
// Write headers
fputcsv($handle, $headers);
// Write rows
foreach ($rows as $row) {
fputcsv($handle, $row);
}
fclose($handle);
}
/**
* Export to HTML table
*/
public function toHTML(array $headers, array $rows, string $title = 'Data Export'): string
{
$html = <<<HTML
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>{$title}</title>
<style>
body { font-family: Arial, sans-serif; margin: 20px; }
table { border-collapse: collapse; width: 100%; }
th { background: #3498db; color: white; padding: 10px; text-align: left; }
td { padding: 8px; border-bottom: 1px solid #ddd; }
tr:hover { background: #f5f5f5; }
</style>
</head>
<body>
<h1>{$title}</h1>
<table>
<thead><tr>
HTML;
foreach ($headers as $header) {
$html .= "<th>" . htmlspecialchars($header) . "</th>";
}
$html .= "</tr></thead>\n<tbody>\n";
foreach ($rows as $row) {
$html .= "<tr>";
foreach ($row as $cell) {
$html .= "<td>" . htmlspecialchars((string)$cell) . "</td>";
}
$html .= "</tr>\n";
}
$html .= "</tbody>\n</table>\n</body>\n</html>";
return $html;
}
/**
* Stream CSV to browser for download
*/
public function streamCSV(array $headers, array $rows, string $filename): void
{
header('Content-Type: text/csv');
header('Content-Disposition: attachment; filename="' . $filename . '"');
header('Cache-Control: no-cache, must-revalidate');
$handle = fopen('php://output', 'w');
fputcsv($handle, $headers);
foreach ($rows as $row) {
fputcsv($handle, $row);
}
fclose($handle);
}
}

2. Create export example:

examples/export-example.php
<?php
declare(strict_types=1);
require __DIR__ . '/../vendor/autoload.php';
use DataScience\Visualization\DataExporter;
echo "=== Data Export Example ===\n\n";
$exporter = new DataExporter();
// Sample data
$headers = ['Product', 'Sales', 'Revenue', 'Growth'];
$rows = [
['Product A', 1247, 45231, '+12%'],
['Product B', 892, 31220, '+8%'],
['Product C', 743, 22100, '-3%'],
['Product D', 612, 18360, '+15%'],
['Product E', 501, 15030, '+5%'],
];
// Export to CSV
$exporter->toCSV(
headers: $headers,
rows: $rows,
filename: __DIR__ . '/../output/products.csv'
);
echo "✓ Exported to CSV: output/products.csv\n";
// Export to Excel-compatible CSV
$exporter->toExcelCSV(
headers: $headers,
rows: $rows,
filename: __DIR__ . '/../output/products-excel.csv'
);
echo "✓ Exported to Excel CSV: output/products-excel.csv\n";
// Export to JSON
$jsonData = [
'report_date' => date('Y-m-d'),
'headers' => $headers,
'data' => $rows,
'summary' => [
'total_sales' => array_sum(array_column($rows, 1)),
'total_revenue' => array_sum(array_column($rows, 2)),
],
];
$exporter->toJSON(
data: $jsonData,
filename: __DIR__ . '/../output/products.json'
);
echo "✓ Exported to JSON: output/products.json\n";
// Export to HTML
$html = $exporter->toHTML(
headers: $headers,
rows: $rows,
title: 'Product Performance Report'
);
file_put_contents(__DIR__ . '/../output/products.html', $html);
echo "✓ Exported to HTML: output/products.html\n\n";
echo "✓ All exports completed successfully!\n";
=== Data Export Example ===
✓ Exported to CSV: output/products.csv
✓ Exported to Excel CSV: output/products-excel.csv
✓ Exported to JSON: output/products.json
✓ Exported to HTML: output/products.html
✓ All exports completed successfully!

Files created:

  • products.csv: Standard CSV file
  • products-excel.csv: UTF-8 BOM for Excel
  • products.json: Structured JSON data
  • products.html: Interactive HTML table

Multiple formats serve different needs:

  • CSV: Spreadsheet import, data analysis
  • JSON: API consumption, programmatic access
  • HTML: Quick viewing, email sharing
  • PDF: Professional reports, printing

Problem: Excel shows garbled text

Cause: Missing UTF-8 BOM for Excel.

Solution: Use toExcelCSV() method:

// Adds UTF-8 BOM for Excel
fprintf($handle, chr(0xEF).chr(0xBB).chr(0xBF));

Problem: Large datasets cause memory errors

Cause: Loading entire dataset into memory.

Solution: Stream data in chunks:

public function streamLargeCSV(iterable $dataGenerator, array $headers, string $filename): void
{
$handle = fopen($filename, 'w');
fputcsv($handle, $headers);
foreach ($dataGenerator as $row) {
fputcsv($handle, $row);
// Memory freed after each iteration
}
fclose($handle);
}

Understand and implement security best practices for data visualization to prevent XSS attacks and ensure data integrity.

Data visualization systems process user input and generate HTML/JavaScript that runs in browsers. Without proper security:

  • XSS (Cross-Site Scripting): Malicious scripts executed in user browsers
  • Data Injection: Corrupted charts or reports
  • Information Disclosure: Sensitive data exposed through errors

❌ Vulnerable Code:

// DashboardGenerator - INSECURE
private function renderStatWidget(array $widget): string
{
return <<<HTML
<div class="widget stat-card">
<div class="stat-value">{$widget['value']}</div>
<div class="stat-label">{$widget['title']}</div>
</div>
HTML;
}

Attack:

$dashboard->addStatCard(
title: '<script>alert("XSS")</script>',
value: '<img src=x onerror=alert(1)>'
);
// Result: JavaScript executes in browser

✅ Secure Code:

// DashboardGenerator - SECURE
private function renderStatWidget(array $widget): string
{
$safeValue = htmlspecialchars($widget['value'], ENT_QUOTES, 'UTF-8');
$safeTitle = htmlspecialchars($widget['title'], ENT_QUOTES, 'UTF-8');
return <<<HTML
<div class="widget stat-card">
<div class="stat-value">{$safeValue}</div>
<div class="stat-label">{$safeTitle}</div>
</div>
HTML;
}

2. JavaScript Injection in Chart Callbacks

Section titled “2. JavaScript Injection in Chart Callbacks”

❌ Vulnerable Code:

// ChartBuilder - INSECURE
public function toJson(array $config): string
{
$json = json_encode($config);
// Replace JS callbacks without validation
return preg_replace('/"JS:(.*?)"/', '$1', $json);
}

Attack:

$config['onClick'] = 'JS:alert(document.cookie)'; // Steals cookies

✅ Secure Code:

// ChartBuilder - SECURE
public function toJson(array $config): string
{
$json = json_encode($config);
if ($json === false) {
throw new \RuntimeException('JSON encoding failed: ' . json_last_error_msg());
}
// Validate JavaScript callbacks
$json = preg_replace_callback(
'/"JS:(.*?)"/',
function($matches) {
$callback = $matches[1];
// Ensure it's a proper function definition
if (!preg_match('/^function\s*\([^)]*\)\s*\{/', $callback)) {
throw new \InvalidArgumentException('Invalid callback format');
}
return $callback;
},
$json
);
return $json;
}

❌ Vulnerable Code:

// DataExporter - INSECURE
public function toCSV(array $headers, array $rows, string $filename): void
{
$handle = fopen($filename, 'w');
fputcsv($handle, $headers);
foreach ($rows as $row) {
fputcsv($handle, $row);
}
fclose($handle);
}

Problems:

  • No input validation
  • No directory creation
  • No error handling
  • Resource leak on failure

✅ Secure Code:

// DataExporter - SECURE
public function toCSV(array $headers, array $rows, string $filename): void
{
// 1. Validate inputs
if (empty($headers)) {
throw new \InvalidArgumentException('Headers cannot be empty');
}
if (empty($filename)) {
throw new \InvalidArgumentException('Filename cannot be empty');
}
// 2. Ensure directory exists
$dir = dirname($filename);
if (!is_dir($dir)) {
if (!mkdir($dir, 0755, true)) {
throw new \RuntimeException("Cannot create directory: {$dir}");
}
}
// 3. Open file with error handling
$handle = fopen($filename, 'w');
if ($handle === false) {
throw new \RuntimeException("Cannot open file: {$filename}");
}
// 4. Use try-finally for cleanup
try {
if (fputcsv($handle, $headers) === false) {
throw new \RuntimeException("Failed to write headers");
}
foreach ($rows as $index => $row) {
if (count($row) !== count($headers)) {
trigger_error("Row {$index} column mismatch", E_USER_WARNING);
}
if (fputcsv($handle, $row) === false) {
throw new \RuntimeException("Failed to write row {$index}");
}
}
} finally {
fclose($handle);
}
}
// Escape for HTML context
$safe = htmlspecialchars($userInput, ENT_QUOTES, 'UTF-8');
// Escape for JavaScript strings
$safe = json_encode($userInput, JSON_HEX_TAG | JSON_HEX_AMP);
// Escape for URLs
$safe = urlencode($userInput);
// Validate non-empty
if (empty($value)) {
throw new \InvalidArgumentException('Value cannot be empty');
}
// Validate type
if (!is_array($data)) {
throw new \InvalidArgumentException('Data must be an array');
}
// Validate format
if (!preg_match('/^[a-zA-Z0-9_-]+\.csv$/', $filename)) {
throw new \InvalidArgumentException('Invalid filename format');
}
// Don't expose internal details
try {
$this->processData($userInput);
} catch (\Exception $e) {
// Log full error internally
error_log($e->getMessage());
// Show generic message to user
throw new \RuntimeException('Failed to process data');
}
// ❌ Blocklist (incomplete)
$dangerous = ['<script>', 'javascript:', 'onerror'];
foreach ($dangerous as $pattern) {
$input = str_replace($pattern, '', $input);
}
// ✅ Allowlist (complete)
$input = strip_tags($input, '<strong><em><u>'); // Only these tags allowed

XSS Test:

$testInputs = [
'<script>alert("xss")</script>',
'"><img src=x onerror=alert(1)>',
'<svg onload=alert(1)>',
'javascript:alert(1)',
];
foreach ($testInputs as $input) {
$dashboard->addStatCard('Test', $input);
$html = $dashboard->generate('Security Test');
// Verify malicious code is escaped
if (strpos($html, '<script>') !== false) {
echo "❌ XSS vulnerability found!\n";
exit(1);
}
}
echo "✓ XSS protection working\n";

Defense in Depth:

  1. Input Validation: Reject bad data early
  2. Output Escaping: Neutralize any remaining threats
  3. Error Handling: Don’t leak sensitive information
  4. Resource Management: Clean up properly (try-finally)

All code examples in this chapter use these security practices. Review the code/ directory for complete secure implementations.

Make visualizations accessible to all users, including those using screen readers, keyboard navigation, or who have color vision deficiencies.

  • Legal Requirement: WCAG 2.1 compliance required for many organizations
  • Broader Audience: 15% of population has some disability
  • Better UX: Accessibility improvements benefit all users
  • SEO Benefits: Screen reader-friendly content ranks better

Our visualizations implement:

  • Perceivable: ARIA labels, alt text, color contrast
  • Operable: Keyboard navigation, focus management
  • Understandable: Clear labels, consistent layout
  • Robust: Valid HTML, semantic markup
// Add accessibility metadata
$chart = $chartBuilder->makeAccessible(
$chart,
'Line chart showing sales growing from $100K to $150K over Q1'
);

Generates:

<div class="chart-container"
role="img"
aria-label="Line chart showing sales growing from $100K to $150K over Q1">
<canvas id="chart"
role="img"
aria-label="Line chart showing sales growing from $100K to $150K over Q1">
</canvas>
<!-- Screen reader fallback -->
<div class="sr-only">
Detailed chart description: Sales started at $100,000 in January,
increased to $125,000 in February, and reached $150,000 in March,
showing a consistent 25% monthly growth rate.
</div>
</div>

CSS for screen-reader-only content:

.sr-only {
position: absolute;
width: 1px;
height: 1px;
padding: 0;
margin: -1px;
overflow: hidden;
clip: rect(0,0,0,0);
white-space: nowrap;
border: 0;
}

Usage in templates:

<?php if (!empty($accessibleDescription)): ?>
<div class="sr-only" id="chart-description">
<?= htmlspecialchars($accessibleDescription, ENT_QUOTES, 'UTF-8') ?>
</div>
<?php endif; ?>

Standard Chart.js colors (problems for colorblind users):

  • Red/Green confusion (8% of males)
  • Blue/Yellow issues (rare but exists)

Wong 2011 palette (works for all types):

$chart = $chartBuilder->makeColorblindSafe($chart);

Colors used:

  • Blue: rgb(0, 114, 178)
  • Orange: rgb(230, 159, 0)
  • Green: rgb(0, 158, 115)
  • Purple: rgb(204, 121, 167)
  • Sky Blue: rgb(86, 180, 233)
  • Vermillion: rgb(213, 94, 0)
  • Yellow: rgb(240, 228, 66)

Scientific validation: Published in Nature Methods (2011), tested with all color blindness types.

Our templates support:

  • Tab: Navigate between interactive elements
  • Enter/Space: Activate buttons
  • Ctrl+S: Download chart (custom shortcut)
  • Escape: Close modals/dialogs

Implementation:

document.addEventListener('keydown', function(e) {
// Download shortcut
if ((e.ctrlKey || e.metaKey) && e.key === 's') {
e.preventDefault();
downloadChartPNG();
}
});

WCAG AA Requirements:

  • Normal text: 4.5:1 contrast ratio
  • Large text: 3:1 contrast ratio
  • Interactive elements: 3:1 ratio

Our defaults:

  • Background: #ffffff (white)
  • Text: #333333 (dark gray) - 12.6:1 ratio ✓
  • Links: #3498db (blue) - 4.7:1 ratio ✓
  • Borders: #ecf0f1 (light gray) - 1.2:1 ratio (decorative)

Automated Testing:

Terminal window
# Install axe-core
npm install axe-core
# Run accessibility tests
npx axe output/dashboard.html

Manual Testing:

  1. Screen Reader

    • macOS: VoiceOver (Cmd+F5)
    • Windows: NVDA (free download)
    • Linux: Orca
  2. Keyboard Only

    • Unplug mouse
    • Navigate entire dashboard
    • Verify all functions accessible
  3. Color Blindness Simulation

    • Chrome DevTools: Rendering → Emulate vision deficiencies
    • Test: Protanopia, Deuteranopia, Tritanopia
  • ARIA labels on all charts
  • Screen reader descriptions provided
  • Keyboard navigation supported
  • Color contrast meets WCAG AA
  • Colorblind-safe palette available
  • Focus indicators visible
  • Alt text for images
  • Semantic HTML markup
  • Skip links for navigation
  • Error messages announced

Progressive Enhancement:

  1. Baseline: Works without JavaScript (PDF reports)
  2. Enhanced: Interactive charts for visual users
  3. Accessible: Alternative access methods for all

Universal Design: Features that help disabled users help everyone:

  • Keyboard shortcuts: Faster for power users
  • High contrast: Better in bright sunlight
  • Clear labels: Less cognitive load

Implement advanced visualization features: real-time updates, chart-to-image export, and interactive filters.

Problem: Page refresh disrupts user experience

Solution: Update data without reload using AJAX

Implementation:

use DataScience\Visualization\LiveDashboard;
$dashboard = new LiveDashboard();
$dashboard
->addLiveStatCard('total-users', 'Users', '12,847', '+8.5%')
->addChart('revenue', 'Revenue', $revenueChart);
// Generate with API endpoint
$html = $dashboard->generateLive(
title: 'Real-Time Dashboard',
dataEndpoint: '/api/dashboard-data.php',
updateInterval: 30 // Seconds
);

API Endpoint:

public/api/dashboard-data.php
header('Content-Type: application/json');
$data = [
'stats' => [
'total-users' => [
'value' => getCurrentUserCount(),
'trend' => calculateTrend(),
],
],
'charts' => [
'revenue' => [
'labels' => getRevenueLabels(),
'datasets' => [['data' => getRevenueData()]],
],
],
];
echo json_encode($data);

Features:

  • Updates every 30 seconds (configurable)
  • Visual update indicator
  • Manual refresh button
  • Error handling with retry
  • XSS protection in dynamic content

Problem: Charts are JavaScript, can’t embed in PDFs

Solution: Convert charts to static PNG images

Requirements:

  • Node.js 18+
  • Puppeteer: npm install puppeteer

Implementation:

use DataScience\Visualization\ChartExporter;
$exporter = new ChartExporter();
// Export to file
$exporter->exportToFile(
chartConfig: $performanceChart,
outputPath: 'chart.png',
width: 800,
height: 400
);
// Get base64 for PDF embedding
$base64 = $exporter->chartToPng($performanceChart, 800, 400);
$report->addChartImage($base64, 'Figure 1: Model Performance');

How it works:

  1. Generate standalone HTML with chart
  2. Launch headless Chrome via Puppeteer
  3. Render chart in browser
  4. Capture screenshot
  5. Convert to base64
  6. Clean up temp files

Use cases:

  • Embed charts in PDF reports
  • Email notifications with chart images
  • Archive dashboard snapshots
  • Generate chart thumbnails

Problem: Users want to save charts

Solution: JavaScript download functionality

Already Implemented in chart-template.php:

function downloadChartPNG() {
const canvas = document.getElementById('myChart');
const url = canvas.toDataURL('image/png');
const link = document.createElement('a');
link.download = 'chart-' + Date.now() + '.png';
link.href = url;
link.click();
}
function downloadChartSVG() {
const canvas = document.getElementById('myChart');
const imgData = canvas.toDataURL('image/png');
const svg = `<svg xmlns="http://www.w3.org/2000/svg"
width="${canvas.width}" height="${canvas.height}">
<image xlink:href="${imgData}"
width="${canvas.width}" height="${canvas.height}"/>
</svg>`;
const blob = new Blob([svg], { type: 'image/svg+xml' });
const url = URL.createObjectURL(blob);
const link = document.createElement('a');
link.download = 'chart-' + Date.now() + '.svg';
link.href = url;
link.click();
URL.revokeObjectURL(url);
}

Buttons in template:

<button onclick="downloadChartPNG()" class="btn">💾 Download PNG</button>
<button onclick="downloadChartSVG()" class="btn">💾 Download SVG</button>

Problem: Users want to explore data

Solution: Filter dropdowns that update charts

Implementation:

$dashboard->addFilter(
id: 'dateRange',
label: 'Date Range',
options: [
'7d' => 'Last 7 Days',
'30d' => 'Last 30 Days',
'90d' => 'Last 90 Days',
],
width: 3
);

JavaScript handler:

function applyFilter(selectElement) {
const value = selectElement.value;
// Fetch filtered data
fetch(`/api/dashboard-data.php?range=${value}`)
.then(response => response.json())
.then(data => {
// Update charts with new data
Object.keys(data.charts).forEach(chartId => {
if (charts[chartId]) {
charts[chartId].data.datasets = data.charts[chartId].datasets;
charts[chartId].update();
}
});
});
}

Problem: 10,000+ data points slow chart rendering

Solution: LTTB (Largest Triangle Three Buckets) algorithm

Implementation:

// Original: 10,000 points
$largeDataset = range(1, 10000);
// Downsample to 500 points (visually identical)
$downsampled = $chartBuilder->downsampleData($largeDataset, 500);
$chart = $chartBuilder->lineChart(
labels: $labels,
datasets: [['label' => 'Sales', 'data' => $downsampled]]
);

Algorithm benefits:

  • Preserves visual shape
  • Maintains peaks and valleys
  • Fast rendering (100ms vs 2000ms)
  • Lower memory usage

When to use:

  • Time series with >1000 points
  • Real-time dashboards
  • Mobile devices
  • Historical data visualization

Test AJAX Updates:

Terminal window
# Start server
cd code/data-science-php-developers/chapter-10/output
php -S localhost:8000
# Open live dashboard
open http://localhost:8000/live-dashboard.html
# Watch for updates every 30 seconds

Test Chart Export:

Terminal window
# Install Puppeteer
npm install puppeteer
# Run export example
php examples/chart-export-example.php
# Verify files created
ls -lh output/chart-export.png
ls -lh output/report-with-chart.pdf

AJAX Updates: Partial page updates are faster and preserve state

Chart Export: Puppeteer provides real browser environment for accurate rendering

Downsampling: Human eye can’t distinguish between 500 and 10,000 points at typical screen resolutions

All features are demonstrated in working examples in the code/ directory.

1. Downsample Before Rendering

$downsampled = $chartBuilder->downsampleData($data, 500);
// Reduces 10,000 → 500 points, <100ms processing

2. Stream Exports

function generateRecords(): \Generator {
for ($i = 0; $i < 1000000; $i++) {
yield [$i, rand(), rand()];
}
}
$exporter->streamLargeCSV(generateRecords(), $headers, 'large.csv');
// Memory usage: ~2MB regardless of size

3. Aggregate in Database

// ❌ Don't: Load all data and aggregate in PHP
$sales = $db->query("SELECT * FROM sales")->fetchAll();
$daily = array_reduce($sales, ...);
// ✅ Do: Aggregate in database
$daily = $db->query("
SELECT DATE(created_at) as date, SUM(amount) as total
FROM sales
WHERE created_at >= DATE_SUB(NOW(), INTERVAL 30 DAY)
GROUP BY DATE(created_at)
")->fetchAll();

1. Avoid External Resources

// ❌ Slow: External image loads
$report->addText('<img src="https://example.com/chart.png">');
// ✅ Fast: Embedded base64 images
$report->addChartImage($base64Image);

2. Limit Page Count

// Use page breaks strategically
$report->addPageBreak(); // Only when needed

3. Simplify HTML

// Complex CSS slows rendering
// Use simple tables and minimal styling

1. Disable Animations for Many Charts

$options = [
'animation' => ['duration' => 0], // Instant render
];

2. Use Appropriate Chart Types

// ❌ Pie chart with 50 slices: Slow, unclear
$chartBuilder->pieChart($labels, $data);
// ✅ Bar chart or table: Fast, clear
$chartBuilder->barChart($labels, $datasets);

3. Lazy Loading

// Load charts as user scrolls
const observer = new IntersectionObserver((entries) => {
entries.forEach(entry => {
if (entry.isIntersecting) {
initializeChart(entry.target.id);
}
});
});

Goal: Build a live dashboard showing current sales metrics.

Requirements:

  • Display today’s sales, orders, and conversion rate
  • Line chart showing hourly sales trend
  • Top 5 products table
  • Auto-refresh every 60 seconds
  • Mobile-responsive layout

Starter Code:

exercises/sales-dashboard.php
<?php
declare(strict_types=1);
require __DIR__ . '/../vendor/autoload.php';
use DataScience\Visualization\DashboardGenerator;
use DataScience\Visualization\ChartBuilder;
// Fetch live data (simulate with random data)
function getLiveSalesData(): array
{
return [
'today_sales' => rand(5000, 15000),
'today_orders' => rand(50, 150),
'conversion_rate' => rand(25, 45) / 10,
'hourly_sales' => array_map(fn() => rand(200, 800), range(0, 23)),
'top_products' => [
['Product A', rand(10, 50), rand(1000, 5000)],
['Product B', rand(10, 50), rand(1000, 5000)],
['Product C', rand(10, 50), rand(1000, 5000)],
['Product D', rand(10, 50), rand(1000, 5000)],
['Product E', rand(10, 50), rand(1000, 5000)],
],
];
}
$data = getLiveSalesData();
$dashboard = new DashboardGenerator();
$chartBuilder = new ChartBuilder();
// Add your implementation here
// 1. Add stat cards for today's metrics
// 2. Add hourly sales line chart
// 3. Add top products table
// 4. Generate with 60-second refresh
$html = $dashboard->generate(
title: 'Real-Time Sales Dashboard',
refreshInterval: 60
);
file_put_contents(__DIR__ . '/../output/sales-dashboard.html', $html);
echo "✓ Sales dashboard generated!\n";

Expected Output:

Dashboard showing:

  • Stat cards: Today’s Sales ($8,450), Orders (87), Conversion (3.2%)
  • Hourly sales line chart (24 data points)
  • Top 5 products table with sales and revenue
  • Auto-refreshes every 60 seconds

Validation:

  • Dashboard displays all stat cards and charts
  • Auto-refresh works every 60 seconds
  • Responsive Design: Test on mobile device (or browser dev tools)
  • Accessibility: Verify ARIA labels with screen reader
  • Security: All user data properly escaped (test with <script>alert(1)</script>)
  • Performance: Charts render in <500ms with sample data
  • Dark Mode: Enable OS dark mode and verify readability

Goal: Generate a comprehensive PDF report for ML model performance.

Requirements:

  • Executive summary with key metrics
  • Accuracy trend chart (as image)
  • Confusion matrix table
  • Recommendations based on performance
  • Multi-page layout with page breaks

Starter Code:

exercises/ml-performance-report.php
<?php
declare(strict_types=1);
require __DIR__ . '/../vendor/autoload.php';
use DataScience\Visualization\PDFReportGenerator;
// Sample ML metrics
$modelMetrics = [
'accuracy' => 0.923,
'precision' => 0.915,
'recall' => 0.908,
'f1_score' => 0.911,
'total_predictions' => 45231,
'correct_predictions' => 41748,
];
$weeklyAccuracy = [0.87, 0.89, 0.91, 0.90, 0.92];
$confusionMatrix = [
['True Spam', 1200, 50],
['True Ham', 30, 1100],
];
$report = new PDFReportGenerator();
// Add your implementation here
// 1. Start report with title
// 2. Add executive summary
// 3. Add stats for key metrics
// 4. Add confusion matrix table
// 5. Add insights and recommendations
// 6. Save PDF
$report->savePDF(__DIR__ . '/../output/ml-performance-report.pdf');
echo "✓ ML performance report generated!\n";

Expected Output:

PDF report containing:

  • Title: “ML Model Performance Report - January 2026”
  • Stat cards: Accuracy (92.3%), Precision (91.5%), Recall (90.8%), F1 (91.1%)
  • Confusion Matrix table
  • Insight: “Model performance exceeds target threshold”
  • Recommendation: “Continue monitoring, no retraining needed”

Validation:

  • PDF opens without errors in PDF viewer
  • All tables and metrics display correctly
  • Security: HTML input is properly escaped (test with <script> tags)
  • Accessibility: Text meets 4.5:1 contrast ratio
  • Performance: PDF generates in <2 seconds
  • File size is reasonable (<500KB for this example)
  • Professional styling maintained throughout

Goal: Create complete A/B test results with multiple visualizations.

Requirements:

  • Bar chart comparing conversion rates
  • Statistical significance annotations
  • Confidence intervals visualization
  • Executive summary with recommendation
  • Export results to CSV, JSON, and PDF

Starter Code:

exercises/ab-test-visualization.php
<?php
declare(strict_types=1);
require __DIR__ . '/../vendor/autoload.php';
use DataScience\Visualization\ChartBuilder;
use DataScience\Visualization\PDFReportGenerator;
use DataScience\Visualization\DataExporter;
// A/B test results
$testResults = [
'control' => [
'name' => 'Control (Original)',
'conversions' => 240,
'visitors' => 2000,
'conversion_rate' => 0.12,
],
'treatment' => [
'name' => 'Treatment (New Design)',
'conversions' => 315,
'visitors' => 2100,
'conversion_rate' => 0.15,
],
'lift' => 0.25, // 25% improvement
'p_value' => 0.018,
'confidence_level' => 0.95,
'significant' => true,
];
// Add your implementation here
// 1. Generate bar chart comparing conversion rates
// 2. Create HTML visualization page
// 3. Generate PDF report with recommendation
// 4. Export raw data to CSV and JSON
echo "✓ A/B test visualizations generated!\n";

Expected Output:

Generates 4 files:

  1. ab-test-chart.html: Interactive chart with statistical annotations
  2. ab-test-report.pdf: Professional PDF with recommendation
  3. ab-test-data.csv: Raw test data for analysis
  4. ab-test-results.json: Structured data for APIs

Validation:

  • Chart displays significance indicator correctly
  • PDF recommendation matches statistical result
  • All exports (CSV, JSON, PDF, HTML) contain complete data
  • Accessibility: Chart has ARIA label describing results
  • Colorblind-Safe: Use makeColorblindSafe() method
  • Security: All data properly escaped in exports
  • Performance: All exports complete in <1 second
  • Statistical calculations are accurate (verify p-value math)

In this chapter, you mastered data visualization and reporting:

  1. Chart.js Integration: Creating beautiful, interactive charts using JavaScript and PHP
  2. Dashboard Building: Constructing real-time dashboards with multiple visualizations
  3. PDF Reports: Generating professional PDF reports for stakeholders
  4. Data Export: Exporting data in multiple formats (CSV, JSON, Excel, HTML)
  5. Visual Best Practices: Following design principles for effective communication
  6. ML Visualization: Presenting model performance and predictions visually
  7. Responsive Design: Building mobile-friendly visualizations
  8. Automated Reporting: Scheduling and automating report generation

You now have working implementations of:

  1. ChartBuilder: Generate Chart.js configurations for line, bar, pie, and scatter plots
  2. DashboardGenerator: Build interactive dashboards with multiple widgets
  3. PDFReportGenerator: Create professional PDF reports with dompdf
  4. DataExporter: Export data in CSV, JSON, Excel, and HTML formats
  5. ML Performance Visualizations: Track model accuracy over time
  6. A/B Test Charts: Present statistical test results with significance indicators
  7. Real-Time Dashboards: Auto-refreshing dashboards for live monitoring
  8. Executive Reports: Multi-page PDF reports with insights and recommendations

The skills from this chapter enable you to:

Business Intelligence:

  • Build executive dashboards for KPI monitoring
  • Generate automated monthly/quarterly reports
  • Visualize sales trends and forecasts
  • Present budget and financial data

Data Science Communication:

  • Visualize ML model performance for stakeholders
  • Present A/B test results with statistical context
  • Show data exploration findings
  • Communicate insights to non-technical audiences

Product Analytics:

  • Track user behavior and conversion funnels
  • Monitor feature adoption rates
  • Visualize cohort analysis
  • Present user segmentation results

Operations & Monitoring:

  • Real-time dashboards for system health
  • Alert visualization and incident reporting
  • Performance metrics over time
  • Capacity planning visualizations

1. Know Your Audience

Tailor visualizations to the viewer:

AudienceFocusFormat
ExecutivesHigh-level KPIs, trendsDashboard, PDF summary
AnalystsDetailed data, exportsInteractive charts, CSV
DevelopersTechnical metrics, APIsJSON, real-time dashboards
CustomersSimple insights, clarityClean charts, minimal text

2. Choose the Right Chart Type

Match chart to data:

  • Line charts: Trends over time (sales, accuracy, metrics)
  • Bar charts: Comparisons (A/B tests, categories)
  • Pie charts: Proportions (market share, categories < 7)
  • Scatter plots: Correlations (feature relationships)
  • Tables: Precise values, detailed data

3. Design for Clarity

  • Minimize chart junk: Remove unnecessary decorations
  • Use color meaningfully: Not just decoration
  • Label clearly: Every axis, every dataset
  • Show context: Baselines, thresholds, targets
  • Tell a story: Title explains the insight

4. Make It Interactive

  • Hover tooltips: Show exact values
  • Click to filter: Drill down into details
  • Responsive design: Works on all devices
  • Export options: Let users get raw data

1. Wrong Chart Type

❌ Pie chart with 12 slices
✅ Bar chart for many categories

2. Misleading Scales

❌ Y-axis doesn’t start at zero (exaggerates differences)
✅ Start at zero for bar charts, context-appropriate for others

3. Too Much Information

❌ Dashboard with 20+ charts
✅ Focus on 5-7 key metrics

4. Poor Color Choices

❌ Red/green for colorblind users
✅ Use colorblind-safe palettes

5. No Context

❌ Chart without title or labels
✅ Clear title explaining the insight

6. Static When Should Be Interactive

❌ PDF for exploratory analysis
✅ Interactive dashboard for exploration, PDF for summary

Development Workflow:

  1. Start with data: Understand what you’re visualizing
  2. Sketch first: Plan layout before coding
  3. Build incrementally: One chart at a time
  4. Test responsiveness: Check on mobile
  5. Get feedback: Show to actual users

Performance Optimization:

// ❌ Bad: Load all data at once
$data = $db->query("SELECT * FROM sales")->fetchAll();
// ✅ Good: Aggregate in database
$data = $db->query("
SELECT DATE(created_at) as date, SUM(amount) as total
FROM sales
WHERE created_at >= DATE_SUB(NOW(), INTERVAL 30 DAY)
GROUP BY DATE(created_at)
")->fetchAll();

Chart Configuration:

// ✅ Good: Descriptive chart
$chartBuilder->lineChart(
labels: $dates,
datasets: [[
'label' => 'Daily Revenue',
'data' => $revenue,
]],
options: [
'plugins' => [
'title' => [
'display' => true,
'text' => 'Revenue Trend - Last 30 Days',
],
],
'scales' => [
'y' => [
'beginAtZero' => true,
'ticks' => [
'callback' => 'JS:function(value) { return "$" + value.toLocaleString(); }',
],
],
],
]
);

Report Structure:

// ✅ Good: Clear report structure
$report
->startReport('Monthly Report', 'January 2026')
->addSection('Executive Summary')
->addStats([...]) // Key metrics
->addInsight('...') // Main finding
->addSection('Detailed Analysis')
->addTable([...]) // Supporting data
->addSection('Recommendations')
->addText('...') // Action items
->savePDF('report.pdf');
ToolBest ForProsCons
Chart.jsWeb dashboardsInteractive, beautifulRequires JavaScript
dompdfPDF reportsServer-side, automatedNo interactivity
CSV ExportData analysisUniversal formatNo visualization
JSON APIProgrammatic accessFlexible, machine-readableRequires client-side rendering

You’ve now completed the communication phase of data science:

  1. Chapter 1-2: Understanding fundamentals
  2. Chapter 3-4: Collecting and cleaning data
  3. Chapter 5-6: Exploring and analyzing data
  4. Chapter 7: Statistical testing
  5. Chapter 8-9: Machine learning and deployment
  6. Chapter 10: Data visualization and reporting ← You are here

What’s Next: Building complete data science projects (Chapter 11)

Before sharing visualizations:

  • Chart type matches data and audience
  • All axes and datasets clearly labeled
  • Title explains the key insight
  • Colors are meaningful and accessible
  • Scales are appropriate (not misleading)
  • Interactive elements work correctly
  • Responsive on mobile devices
  • Data export options available
  • Source and timestamp included
  • Tested with actual users

Immediate Practice:

  1. Build a dashboard for your current project
  2. Generate a PDF report for stakeholders
  3. Create A/B test visualization from real data
  4. Set up automated weekly reporting

Chapter 11 Preview:

In the next chapter, you’ll learn Building a Real-World Data Science Project:

  • Complete project from requirements to deployment
  • Integrating all skills from previous chapters
  • Production architecture patterns
  • Monitoring and maintenance
  • Scaling considerations
  • Team collaboration workflows

You’ll build a complete recommendation system, from data collection through model deployment and visualization.

::: tip Next Chapter Continue to Chapter 11: Building a Real-World Data Science Project with PHP to put it all together! :::